
1

UPGRADE is the European Online Magazine
for the Information Technology Professional,
published bimonthly at
http://www.upgrade-cepis.org/

Publisher
UPGRADE is published on behalf of CEPIS (Council of
European Professional Informatics Societies,
http://www.cepis.org/) by Novática (http://www.ati.es/novatica/)
and Informatik/Informatique (http://www.svifsi.ch/revue/)

Chief Editors
François Louis Nicolet, Zurich <nicolet@acm.org>
Rafael Fernández Calvo, Madrid <rfcalvo@ati.es>

Editorial Board
Peter Morrogh, CEPIS President
Prof. Wolffried Stucky, CEPIS President-Elect
Fernando Sanjuán de la Rocha and
Rafael Fernández Calvo, ATI
Prof. Carl August Zehnder and François Louis Nicolet, SVI/FSI

English Editors: Mike Andersson, Richard Butchart, David
Cash, Arthur Cook, Tracey Darch, Laura Davies, Nick Dunn,
Rodney Fennemore, Hilary Green Roger Harris, Michael Hird,
Jim Holder, Alasdair MacLeod, Pat Moody, Adam David Moss,
Phil Parkin, Brian Robson

Cover page designed by Antonio Crespo Foix, © ATI 2001

Layout: Pascale Schürmann

E-mail addresses for editorial correspondence:
<nicolet@acm.org> and <rfcalvo@ati.es>

E-mail address for advertising correspondence:
<novatica@ati.es>

Copyright
© Novática and Informatik/Informatique. All rights reserved.
Abstracting is permitted with credit to the source. For copying,
reprint, or republication permission, write to the editors.

The opinions expressed by the authors are their exclusive
responsibility.

The European Online Magazine for the IT Professional
http://www.upgrade-cepis.org
Vol. II, No. 6, December 2001

Joint issue with NOVÁTICA and INFORMATIK/INFORMATIQUE

2 Presentation – Joe Ammann, Jesús M. González-Barahona,
Pedro de las Heras Quirós, Guest Editors

4 Free Software Today
 – Pedro de las Heras Quirós and Jesús M. González-Barahona
The position of many major companies with regard to Free Software is changing. New
companies are becoming giants. It is vital for the data on which we base this idea to be right
up to date. Any impression based on data from a few months ago will very possibly be wrong.

12 Should Business Adopt Free Software?
 – Gilbert Robert and Frédéric Schütz
We explain what Free Software is, and what its advantages are for users, and provide an
overview of its status in business, in particular by looking at the obstacles which still stand in
the way of its use.

20 Harm from The Hague – Richard Stallman
The proposed Hague Treaty threatens to subject software developers in Europe to U.S.
software patents. The consequence is that you could be sued about information you distributed
under the laws of any country, and the judgement would be inforced by your country.

23 Software Patentability with Compensatory Regulation: a Cost Evaluation – Jean
Paul Smets and Hartmut Pilch
The European Patent Office has proposed to remove limitations on patentability, such as the
exclusion of computer programs. The French Academy of Technologies suggests additional
regulation measures in order to reduce potential abuses of software patents.

33 Open Source in a Major Swiss Bank
 – Klaus Bucka-Lassen and Jan Sorensen
This article highlights which advantages and disadvantages of Open Source Software are of
significance for a financial services provider. It describes the problems that arose, and what
convinced management to use Struts for Web application developments.

36 European Initiatives Concerning the Use of Free Software in the Public Sector
– Juan Jesús Muñoz Esteban
The European Commission is beginning to make use of Free Software for some of their
strategic initiatives. A study of the use of Free Software in several administrations of different
countries analyses the reasons for adopting it.

41 GNU Enterprise Application Software – Neil Tiffin and Reinhard Müller
GNUe is a set of integrated business applications and tools to support accounting, supply
chain, human resources, sales, manufacturing, and other business processes. We describe the
project, the idea and motivation for developers and users behind it.

45 The Debian GNU/Linux Project – Javier Fernández-Sanguino Peña
The Debian GNU/Linux project is one of the most ambitious Free Software projects, involving
a large number of developers creating a totally free operating system.

50 Journal File Systems in Linux – Ricardo Galli
Linux buffer/cache is really impressive and affected, positively, all the figures of my
compilations, copies and random reads and writes.

57 The Crisis of Free Scientific Software – David Santo Orcero
The scientific world was among the pioneers in creating Free Software. In the 1990s Free
Software started to spread into other areas. In certain fields this reached a point where there
are either no free tools available, or no more free tools are being actively developed.

60 Counting Potatoes: the Size of Debian 2.2
 – Jesús M. González-Barahona, Miguel A. Ortuño Pérez, Pedro de las Heras
Quirós, José Centeno González and Vicente Matellán Olivera
Debian is the largest Free Software distribution, with more than 4,000 source packages in the
release currently in preparation. We show that the Debian development model is at least as
capable as other development methods to manage distributions of this size.

Open Source / Free Software: Towards Maturity
Guest Editors: Joe Ammann, Jesús M. González-Barahona, Pedro de las Heras Quirós

Coming issue:
“Knowledge Management”

Open Source / Free Software: Towards Maturity

© Novática and Informatik/Informatique UPGRADE Vol. II, No. 6, December 2001 23

Software Patentability with Compensatory Regulation:
a Cost Evaluation

Jean Paul Smets and Hartmut Pilch

Europe is preparing major changes in its patent system. The European Patent Office (EPO) has proposed to
remove limitations on patentability, such as the exclusion of computer programs in Art. 52 of the European
Patent Convention (EPC). A report by the French Academy of Technologies supports this proposal but
suggests additional regulation measures in order to reduce potential abuses of software patents. In this
article, we try to assess the costs of such regulation measures. They add up to an estimated 1–5 billion € per
year for the European Union. Various regulation approaches and cheaper legislative approaches are com-
pared.

Keywords: Software Patents, Copyright, European Patent
Office, Small Software Publishers, Cost of Regulation

A Drive for Patenting Logical Functionalities in
Europe

Europe is preparing major changes in its patent system.
Among proposed changes <http://www.european-patent-office.org/news/
headlns/2000_08_17.htm>, the European Patent Office (EPO) has
asked for a removal of the exclusion of computer programs in
Art 52(2) EPC together with all other explicit exceptions to pat-
entability (intellectual methods, business methods, mathemati-
cal methods etc.), in order to put the written Law in line with
its recent policy of granting patents for all practical and
repeatable problem solutions <(http://swpat.ffii.org/vreji/papri/jwip-
schar98/indexen.html>, so as to clarify the legal status of approxi-
mately 30,000 software patents granted under this policy <http:/
/swpat.ffii.org/vreji/pikta/index.en.html> and to harmonise the practise of
national jurisdictions, some of which have been reluctant to
join the EPO on its quest for new frontiers of patentability.

Multinational companies in the fields of telecommunications
(e.g. Alcatel, Siemens), computer electronics (ex. Thomson
Multimedia), Aerospace & Defence (ex. Dassault, Matra,
Thales), software (e.g. IBM) have been continuously lobbying
European governments in order to get software patents fully
legalised in Europe. The European Patent Office, most national
patent offices as well as industrial property professionals are
equally lobbying European governments1.

Plans to legalise software patents in Europe have met oppo-
sition from various groups. 300 small software publishers from
the Eurolinux Alliance have raised more than 80,000 signatures
through an electronic petition2. Most political parties in Europe
have taken public positions against software patents.3 In some
countries, parliaments have even blocked governments from
taking pro-patent positions within international bodies4.

Multiple government-sponsored studies have been conduct-
ed in Europe to assess the economic and juridical impact of
software patents5. Reports written from an economic perspec-

tive tend to conclude that the introduction of patents in the soft-
ware economy would have no impact at best but would proba-
bly lead to less innovation and competition. Reports written
from a patent law perspective tend to conclude that there should
be no explicit limitation of patentability and that the European
practice should come in line with that of the United States of
America. Some reports (IPI and the two German studies) com-
bine both conclusions: software patents probably have a nega-
tive economic impact but should be legalised. Three reports
(DG-MKT, IPR Helpdesk, Frauenhofer) include a review of
opinion among software companies which shows that an over-
whelming majority (80% to 90%) of software companies is
happy with copyright and more or less hostile to software pat-
ents, with the noticeable exception of large software corpora-
tions (ex. IBM, Microsoft). Only one report <(http://www.
proinnovation.org/rapport brevet/brevets_plan.pdf> carefully explores

1

Dr. Ing. Jean-Paul Smets-Solanes is currently CEO of Nexedi,
a software service company based in Lille (France) which special-
ises in Open Source / Free Software solutions for small and
medium businesses. Jean-Paul Smets-Solanes is a former civil
servant of the French Ministry of Economy, Finance and Industry.
He coordinated a report on software patents published in 2000 by
the Conseil Général des Mines, a strategic body of the French
Ministry of Economy, Finance and Industry (http://www.pro-
innovation.org) and organized in cooperation with the French
Embassy in Japan the first Europe-Japan conference on Open
Source and Free Software in 1999. <jp@smets.com>

Hartmut Pilch, MA in Chinese and Japanese philology and lin-
guistics, is state-examined translator for Chinese, Japanese, Eng-
lish and German, fluent in several more languages, living in
Munich, regularly working in EPO and other patent contexts as
simultaneous interpreter. Engaged in hobby programming, espe-
cially using Lisp, since 1988, using GNU tools on SunOS since
1990, on Linux since v 0.9, co-founder of FFII.org in 1998 and
Eurolinux.org in 1999, working in the area of interpreting as well
as internationalisation and localisation programming.
<phm@a2e.de>

Open Source / Free Software: Towards Maturity

24 UPGRADE Vol. II, No. 6, December 2001 © Novática and Informatik/Informatique

alternative scenarios to the patentability of logical functionali-
ties: full exclusion, reduced enforcability, sui generis rights.

Among recent emerging solutions to the ongoing debate,
some groups such as the French Academy of Technologies have
proposed6 to quickly and fully legalise the patenting of “com-
puter-implementable inventions” (logical functionalities) and
at the same time adopt regulation measures in order to reduce
the potential abuses of such patents. The purpose of this article
is to assess the financial costs of this approach and compare it
with other approaches.

Patenting Logical Functionalities under the European
Patent Convention

Most people believe that software patents relate to software.
Most people also believe that software patents are meant for
software developers who wish to protect their software from
plagiarism. These two common ideas are quite wrong. Soft-
ware patents are granted to people who do not necessarily
develop and publish software. Also, software patents do not
protect software authors against imitation7.

2.1 Copyright vs Patents
The debate about software copyright vs software patents is

not a debate about whether the programmer should be entitled
to control the use of his intellectual achievement but about
where this achievement lies – in the functionalities or in their
creative combination into a complex work – and how it can be
protected in such a way that the protection does not defeat
itself.

For example, what the reader is currently reading is a textual
composition of concepts, such as argumentation chains and
rhetorical forms. Much effort went both into designing these
concepts and combining them into a structured work. Copy-
right protects the original combination of concepts which
defines this work: we hereby grant the reader a license to
produce integral facsimile copies of this article but we forbid
plagiarism or reusing parts of this article without permission.
Copyright does not protect however the innovative or less-
innovative concepts which this article is based on: readers are
free to write original articles based on the same argumentation
chains or rhetorical forms. The main argument for not granting
monopolies on concepts or ideas in our societies is: promoting
creation. Copyright would actually become quite useless if
authors had to ask permission to hundreds of concept owners
each time they wanted to create and publish an original work.
Protecting ideas and concepts would just act as a barrier to
creation.

Just like this article, a computer program is also a textual
composition of concepts. Rather than argumentation or rhetor-
ics, computer programs are based on logical functionalities.
Software copyright protects the original combination of logical
functionalities but not the logical functionalities per se. Advo-
cates of software patents suggest8 that designing a functionality
is the important part of a computer program, the rest consisting
mainly of easy “coding”. Opponents to software patents on the
contrary argue9 that logical functionalities tend to be fairly easy
to design, whereas the bulk of the skill and sweat of a program-

mer goes into weaving these logical functionalities together
into a well-formed tissue10. In either case, subjecting software
to both patents and copyright means allowing the lesser
achievement to stand in the way of the greater one, thereby
risking to stifle innovation rather than promote it.

2.2 Description and Claims
In order to understand what a software patent is, one should

first understand how patents work. A patent contains two
important parts:

Claims are the most important part of a patent since they
define how the patent may be enforced in case of dispute. For
example, new applications of an existing patented molecule
may be claimed in a new patent by another inventor. The owner
of the initial patent may produce the patented molecule but will
need a license in order to be allowed to use it for his newly
patented application.

One should note that patentable inventions in chemistry,
mechanics etc. may contain in their description some steps
which are achieved under program control. Such inventions are
not considered here to refer to software innovations, as long as
the invention-relevant problem solution involves physical cau-
sality and not merely logical functionality.

2.3 Describing Logical Ideas and Claiming Physical
Objects

Patenting software innovation often leads to patents where
the teaching in the description and the claimed objects are only
loosely related to each other.

1. the teaching may consist of a series of steps to logically
transform numbers, data or other schematic entities (algo-
rithm, functionality, mathematical function, data format,
communication protocol, language)

2. the claims may refer to “methods” (ex. image display,
medical diagnosis, resource allocation, fuel saving, steel
cutting, oil drilling), “systems” (ex. programmed compu-
ter, integrated circuit, telephone, missile), “computer pro-
gram products” (e.g. software on disk or offered for down-
load), or even computer programs as text structures
independent of storage media.

While the description and the main claim often disclose an
abstract “rule of organisation and calculation”, the dependent
claims may describe a wide range of concrete objects or proc-
esses. Usually the description will use terminology of micro-
electronics (ex. associative memory) or “software engineering”
(ex. database) rather than their mathematical equivalents (ex.
indexed set) or their business administration equivalents (ex.
directory book). In practise this does not restrict the application
of the patent claims, because “software” is the standard way of
putting program and business logic to work, and the metaphor-
ical language of “software engineering” is an equivalent of
mathematical language. Where this still is not enough to cover
a competitor’s similar solution, patent courts may further
enlarge the claim scope by applying the “doctrine of equiva-
lence”.

Thus, software patents on the description side teach us noth-
ing but intellectual methods (logical functionalities, rules of

2

Open Source / Free Software: Towards Maturity

© Novática and Informatik/Informatique UPGRADE Vol. II, No. 6, December 2001 25

organisation and calculation), while on the claim side they may
succeed in monopolising a broad range of material objects and
processes.

2.4 Software Patents in Europe
The legal rules of patentability in Europe are quite simple.

The European Patent Convention (EPC), which defines
substantive patent law in Europe, contains explicit exclusions
to patentability in the field of software, mathematics and other
abstract innovations. The EPC does not exclude however to
grant patent on inventions which make use of software, mathe-
matics, etc. The drafters of the EPC convention had in mind the
fact that technical inventions (e.g. in chemistry, mechanics, etc)
which make use of a computer should be patentable as long as
the innovative solution does not lie in logical functionalities
(algorithms) typically thought out by a mathematician or pro-
grammer during a bathtub session, but rather in the physical
causalities that form the subject of empirical laboratory
research. This approach was clearly explained in the EPO’s
Examination Guidelines of 1978 <(http://swpat.ffii.org/vreji/papri/epo-
gl78/indexen.html>, written shortly after the EPC went into force
and the EPO was founded:

A computer program may take various forms, e.g. an
algorithm, a flow-chart or a series of coded instructions
which can be recorded on a tape or other machine-read-
able record-medium, and can be regarded as a particu-
lar case of either a mathematical method (see above) or
a presentation or information (see below). If the contri-
bution to the known art resides solely in a computer
program then the subject matter is not patentable in
whatever manner it may be presented in the claims. For
example, a claim to a computer characterised by having
the particular program stored in its memory or to a
process for operating a computer under control of the
program would be as objectionable as a claim to the
program per se or the program when recorded on mag-
netic tape.

The EPO has never had a definition of what is “technical”.
The question was treated as a matter of examiners’ intuition. “It
is hard to define what is a camel, but when you see it you know
it” was one common excuse for this lack of rigor. Yet there
seemed to be a reliable consensus of customary law on what is
technical. German courts were not satisfied with intuition and
created a definition, which has been in use for 30 years now:

An invention is a teaching on how to use controllable
natural forces to achieve a causally overseeable success
which is without mediation by human reason the imme-
diate result of controllable natural forces.

If applied seriously, this rule excludes any patents on what
German courts call “rules of organisation and calculation” or
“calculating programs for computers”. However applying this
rule in practise is not always easy. The EPO Guidelines of 1978
exhort the examiner to

disregard the form or kind of claim and concentrate on
the content in order to identify the novel contribution
which the alleged invention claimed makes to the known
art. If this contribution does not constitute an invention,

there is not patentable subject matter. This point is illus-
trated by the examples … of different ways of claiming
a computer program.

Thus, even if a process of cutting steel <http://swpat.ffii.org/vreji/
papri/bghwalzst80/indexen.html> is claimed, there is not necessarily an
invention. The examiner must disregard the claim language and
look where the contribution really lies. Are the physical prop-
erties of steel part of the problem solution? Or is there only a
logical problem, which is already solved at the level of logics
before it is applied to steel, just like a method for adding num-
bers may be applied to apples or tomatoes? In the latter case
there is no invention and therefore nothing to examine for
“novelty” and “inventive step”. This examination of seeing
through the claim language and penetrating right to the core of
the contribution, also called “core theory”, has helped patent
offices to avoid a lot of tedious and costly searching work.

Meanwhile, the EPO has however adopted a different
approach11 to the EPC. In 1985, the EPO deleted the above-
cited definition of “computer program” from the Examination
Guidelines and replaced it with ambiguous wordings. The intu-
ition on what is technical also faded away. In 1998, Mark Schar,
a leading EPO judge, redefined <http://swpat.ffii.org/vreji/papri/jwip-
schar98/indexen.html> the “technical invention” as “any practical
solution”, explicitly rejecting the German definition which
required a direct use of physical forces. Software patents were
granted as long as no literal mention of “computer programs”
was made in the claims. Starting in 1997, even claims to “com-
puter program products” were granted, and “computer pro-
grams” were no longer considered to be “computer programs
as such” if they could be said to have a “technical effect” such
as making computing processes more efficient.

However there is also a tendency in the EPO to refuse at least
some software patents on grounds of not having a “technical
effect”. This was the case with a “pension benefit system” in
2000. In such cases, the EPO first conducts a prior art search.
Then, in the context of assessing “inventive step” (non-obvi-
ousness), it demands that there be a “technical solution to a
technical problem”, based on EPO intuitions. In a recent press
release <http://www.epo.co.at/news/pressrel/2001_08_13_e.htm>, the EPO
has furthermore signalled that it is overloaded with search
requests for business methods and therefore will not conduct
novelty searches if it is evident from the beginning that the
contribution is not “technical”. This again seems to indicate a
certain willingness to return to the “core theory”, i.e. the com-
mon sense of looking for a technical teaching before examining
the novelty of that teaching, and to return to an understanding
of “technical character” which no longer includes all “practical
repeatable solutions” but depends on the law and on an intui-
tively perceived “technical character”. Therefore, at present,
words should be carefully chosen whenever filing software pat-
ents at the European Patent Office. For example, it is better to
use the word “database” than equivalents like “indexed set” or
“directory book” 12.

One should note that software patents granted by the Europe-
an Patent Office have currently little value. Disputes show that
high level national courts have largely enforced, even recently,
the original interpretation of the EPC which excludes software

Open Source / Free Software: Towards Maturity

26 UPGRADE Vol. II, No. 6, December 2001 © Novática and Informatik/Informatique

patents. Some national judges, patent examiners, academics
and patent attorneys, all known for their deep involvement in
the patent system, have publicly expressed13 their worries that
the current practice of the EPO could be illegal. Owners of
European software patents tend not to use and enforce them
because the risk of having the patent voided by a national court
is much too high. This situation may sound absurd14 but it has
a great advantage since it creates some kind of self regulation
which prevents abuses from software patent owners.

2.5 Business Method Patents in Europe
Typical European “software patents” are really patents on

logical functionalities. Their main claims are directed to ideas
such as controlling one computer by another <http://swpat.ffii.org/
vreji/pikta/mupli/ep193933/index.en.html>, reading data from a medical
data input source and directly displaying an analysis result to
the patient <http://swpat.ffii.org/vreji/pikta/mupli/ep487110/index.en.htm> or
connecting buyers to potential sellers by letting them specify an
acceptable price range through an input terminal <http://swpat.ffii.
org/vreji/pikta/mupli/ep762304/index.en.html>. These claims represent at
the same time a functionality, a business idea, a problem solu-
tion, a programming problem and a computer program. Apart
from prior art there is hardly any limit to the breadth and trivi-
ality <(http://swpat.ffii.org/stidi/frili/indexen.html> of such claims. This is
because computer programs, unlike traditional patentable in-
ventions, are not limited by the constraints of matter (physical
causality) but only by the laws of the human mind (logical
functionality).

The only limitation currently lies in the requirement that the
business method must be automatable, i.e. “repeatable” accord-
ing to Mark Schar’s invention concept15. Thus, while the EPO
granted a patent on the principle of learning languages by com-
paring student pronunciation with a digitally stored master
sample <http://swpat.ffii.org/vreji/pikta/mupli/ep461127/index.en.html>, this
covers only program logic which automates this principle, not
application of the principle by human interaction between
teachers and pupils.

Software Patents with Compensatory Regulation:
System Goals

The strongest argument to legalising software patents in
Europe is to put European Patent Law in line with the United
States and provide European financial markets the same tools
as in the United States in order to harmonise assessments meth-
ods for intangible assets in the “new economy”. Many govern-
ment officials in Europe still believe that there is no other way
but imitate the United States and give multinational companies
what they are asking for16. Promoting innovation, competition,
small software publishers or Open Source / Free Software may
still be an issue, although probably not a priority for them.

3.1 Enforce Interoperability
It is widely acknowledged that fair competition in the soft-

ware economy requires interoperability, that is compatibility of
file formats, network protocols and interfaces between compet-
ing products.

Software patents tend to block interoperability because they
allow to create monopolies on file formats, network protocols
or interfaces. For example, Apple Computer was granted an
exclusive license on the Sorenson17 patents on digital video
compression. Apple markets a product called Quicktime <http://
www.apple.com/quicktime> which allows to view digital video com-
pressed according to the Sorenson method on Windows and
MacOS only. Other competing products (ex. Real, Windows
Media Player, KDE Multimedia, XMMS, etc.) can not view
digital video compressed this way because of the exclusive
licensing of the Sorenson patents to Apple.

It is therefore desirable that software patent regulation meas-
ures enforce fair licensing practices on all patents required for
interoperability.

3.2 Protect Small Software Publishers
The introduction of patents in the software economy proba-

bly generates an average 30% extra cost to software develop-
ment for industrial property assessment. This extra cost can be
very high for a small software publisher because it requires new
skills and it includes a highly unpredictable risk factors.

As a reminder, most packaged software is developed by
small teams of developers, typically 1 to 5 engineers. Training
existing engineers to industrial property is long and reduces
their availability for innovation tasks. Hiring a full time indus-
trial property expert is too costly. Sharing a full time industrial
property expert is difficult. Fully outsourcing industrial proper-
ty is often inefficient thus too expensive. Industrial property is
often experienced as a useless burden rather than anything else
by small software publishers as the Fraunhofer study showed.

The risk for a small software publisher is tremendous. All
currently published software likely include software patent
infringements without their author being aware of it. Simple
universal methods, such as publishing a database through a
Web server, are covered by more than 10 patents, some of
which are very similar. Patent attorneys are often unable to
assess the risk of litigation on those patents18. Although prob-
ably small, this risk relates to disputes costing millions of
Euros. Small software publishers suffer much more than big
corporations from this risk, not only because of their smaller
financial size, but also because they do not usually own large
patent portfolios which large corporations use to eliminate liti-
gations risks with their competitors.

It is therefore desirable that software patent regulation meas-
ures allow to lower the access costs to industrial property and
eliminate litigation risks for small software publishers.

3.3 Protecting Small Development Service Providers
Software regulation measures should also allow to protect

small software development service companies. As we
explained, simple universal techniques, such as publishing a
database through a Web server, are covered by more than 10
patents. A service company which provides some kind of spe-
cific integration of a database server, a web server and scripting
language may face a patent infringement dispute and make its
client face it. Large development service corporations (ex.
IBM, CAP Gemini) are likely to provide some kind of patent

3

Open Source / Free Software: Towards Maturity

© Novática and Informatik/Informatique UPGRADE Vol. II, No. 6, December 2001 27

infringement insurance to their clients, thanks to their own pat-
ent portfolio. Also, large service shops can negotiate flat rate
licenses with large patent portfolios. This is not however the
case of small service shops for obvious reasons.

Regulation measures should provide cheap or near-free
insurance services to small and independent service shops in
order to let them compete with large service shops.

3.4 Protecting Free / Open Source Software
Open Source / Free Software is a key technology to promote

innovation, competition, freedom and democracy in the infor-
mation society. Open Source / Free Software requires individ-
uals to share source code and publish freely downloadable pro-
grammes on the internet.

Software patents are not a threat to Free / Open Source devel-
oped by companies such as IBM, HP, etc., which constitutes the
minority of Open Source / Free Software. Software patents are
however a threat to the vast majority of Free / Open Source
software which is developed by individuals. A substantial
amount of Free / Open Source software has already been taken
off the net because of patent threats. Even in Europe, large
corporations have threatened individual programmers. E.g.
Thomson Multimedia threatened a Norwegian who published
original implementations of patented algorithms (MP319). This
case is quite typical: Thomson Multimedia had probably no
legal grounds to start a dispute and win because the Norwegian
programmer had written nothing but a computer program as
such, which cannot be a patentable invention according to
European law. However, a legal dispute with Thomson Multi-
media is very costly and frightening. This is why Thomson
Multimedia succeeded in forcing an individual programmer to
remove a program from the Internet. This is also why European
Linux distributions such as SuSE and Mandrake come without
MP3 encoders and with ugly font rendering mechanisms for
TrueType fonts20.

Threatening Open Source / Free Software developers with
software patents is quite common in the United States. Source-
forge, a web site which hosts most Open Source / Free Software
projects, receives every week dozens of letters threatening to
start a dispute for patent infringement. Up to now, Sourceforge
has used the first amendment act in the United States, which
protects freedom of speech, to reject such claims.

However, it is not certain that there is anything such as the
first amendment act in Europe to protect the publication of Free
/ Open Source software. Exceptions to infringement, namely
private use or research, may not apply to the publication of
Free/ Open Source software because Free / Open Source soft-
ware often constitutes a serious commercial competitor. Com-
panies such as Microsoft consider21 software patents as a stra-
tegic tool to fight against Free / Open Source software.

It is therefore desirable that software patent regulation meas-
ures at least allow the unhindered publication and distribution
of Open Source software and eliminate legal risks for individ-
ual developers.

3.5 Discouraging Juridical Terrorism
Most software patent trials end up with a patent cancellation

because most software patents are granted for innovations
which can be shown to be old, if you only search for prior art
long enough. However, usually software patent disputes do not
end in court. Large patent portfolio holders cross-license to
each other. Small software publishers must accept whatever
they are asked by larger publishers because litigations costs are
too high. Moreover, specialised patent litigation companies
who don’t write any software make a good living by using
patents from small patent holders to demand well-calculated
license fees from successful software publishers.

Rather than financing innovation, software patents seem to
finance a litigation economy based on the filing of trivial or
existing software innovations at patent offices. Small software
publishers, who are essential for competition and innovation in
the software economy, are the most vulnerable targets. In order
to guarantee that patents do not excessively impede innovation
and competition, compensatory regulation measures are
deemed necessary.

Software Patents with Compensatory Regulation:
Measures and Costs

The French Academy of Technology has proposed four
regulation measures which could possibly allow to reach the
goals described above:

1. A guarantee fund
2. A database of known computing solutions
3. Improved examination
4. Incentives for SMEs
The French Academy of Technology did not provide any

detail on what those measures really mean. In order to assess
their cost, we shall introduce hereafter original details for those
4 measures and add a fifth one: a patent insurance, which could
be considered as an incentive for SMEs in combination with a
guarantee fund.

4.1 Guarantee Fund
It is possible for a state to regulate software patents abuses by

introducing a guarantee fund in charge of implementing a state
defined policy. For example, a state owned fund could buy 1000
software patents every year, hire a patent busting (prior art
search) team and act as follows:

1. use its patent portfolio to start a dispute against any patent
owner who refuses to grant fair licenses on innovations
required for interoperability

2. use its patent portfolio to start a dispute against any patent
owner who threatens developers of Open Source / Free
Software

3. use its patent busting team against any company in the
cases described above

4. attack companies which practice juridical terrorism
If patents are bought at 200,000 € from national research

centres and universities, 50,000 € of which are given to
researchers as an incentive, if 20 persons are hired to select
patents which deserve to be bought and 20 other persons are in
charge of patent busting, a Guarantee Fund costs about

4

Open Source / Free Software: Towards Maturity

28 UPGRADE Vol. II, No. 6, December 2001 © Novática and Informatik/Informatique

200,000,000 € a year. Such a guarantee fund would also opti-
mise the effect of patents on innovation since it allows to com-
bine property approaches with recompense approaches22.

One should notice that 1,000 patents a year is not that much.
According to the USPTO database, a company such as IBM
owns more than 30,000 patents and files more than 3,000
patents every year in the United States. Those figures are
probably underestimated if one considers patents owned by
IBM through a subsidiary or bought by IBM from third parties.
It is very likely that IBM owns as much a 100,000 patents.
Therefore, 1,000 patents a year is required to cover the basic
technologies of software within a few years. 5,000 patents a
year would probably be required, especially if the overall
number and scope of software patents increases, which is to be
expected.

4.2 Algorithm Database
A large database of algorithms can help reducing the number

of litigations if it takes into account articles and software
distributed around the world. Maintaining a useful database
requires methodologies that go beyond mere indexing of
descriptions, because the same logical method can be described
in many equivalent ways. At least 100 people who analyse one
patent application per person/day each, 200 people who
analyse publications of specialist publications, 500 people who
analyse actual computer programs and several 100 people who
make sure that the database is maintained in a way that makes
it reasonably well searchable. This will cost more than
100,000,000 € per year. If at least the most important publica-
tions in languages like Japanese, Chinese, Russian etc is not to
be ignored, the figure may have to be doubled. It must be noted
that the American Software Patents Institute (SPI.org) project,
which major software companies such as IBM sponsored with
large amounts of money, tried to undertake this work and is
meanwhile generally considered to have failed.

4.3 Improved Examination
Improving the examination process helps reducing the

number of litigations. To reach a fair level of examination, it is
required to add at least 5 days to the reviewing process and to
duplicate the reviewing process in order to create some kind of
competition and incentives between reviewer teams to elimi-
nate as many as possible software patent applications. This
costs about 500,000,000 € a year for 50,000 software patents
filed (but not necessarily granted) every year. It is likely that
this number of patents will be much higher if the number and
scope of software patents further explodes, as may be expected.

4.4 Incentives for Small Software Publishers
Simple incentives for small software publishers include

subsidies to file worldwide software patents (10,000 € for a
valid patent) and training sessions on industrial property
(200,000 € for each region in Europe every year). Such incen-
tives may eventually allow small software publishers to under-
stand industrial property and create tight relations with patent
attorneys. This is also a way to increase the number of patent
attorneys in all European regions. One can expect at least 5000
patents to be subsidised every year for a yearly cost of about
120,000,000 €.

4.5 Patent Insurance
Patent insurance consists in providing full protection against

patent litigations for a certain rate of a company’s revenue. A
patent insurance negociates flatrate licenses for all its members.
Members in turn are required to check that they are not infring-
ing on a few risky patents. Members’ clients are provided a full
insurance against litigation. The cost of patent insurance is
unknown. Patent infringement litigation costs at least several
100,000 € and usually several millions. Some companies such
as IBM require a 3% rate off the company turnover in return for
their portfolio. If this can be taken as an indicator, it would

Costs Summary (in 1000 €)

group item unit unit cost min units max units min total max total

guarantee fund 212,000 1,050,000

patent acquisition patent 200 1,000 5,000 200,000 1,000,000

patent review man 200 20 50 4,000 10,000

patent busting man 200 20 100 4,000 20,000

patent insurance man 200 20 100 4,000 20,000

Algorithm dabase man 200 200 1,000 40,000 200,000

improved examination 250,000 1,000,000

1st review patent 2.5 50,000 200,000 125,000 500,000

2nd review patent 2.5 50,000 200,000 125,000 500,000

incentives 170,000 1,540,000

collective training session 200 100 200 20,000 40,000

patent insurance company 10 5,000 50,000 50,000 500,000

patent filing patent 20 5,000 50,000 100,000 1,000,000

672,000 3,790,001

Open Source / Free Software: Towards Maturity

© Novática and Informatik/Informatique UPGRADE Vol. II, No. 6, December 2001 29

make patent insurance cost up to 30% of each company’s reve-
nue. Patent insurance could also cost only 1% of revenue
thanks to cross licensing agreements.

In the figures above, we have set up a patent insurance
together with the guarantee fund and state financed the man-
agement costs of that fund. This is a reasonable solution con-
sidering that private insurances do not want at present to insure
software patent litigations. We have also included subsidies for
SMEs in order to generate a software patent insurance market
in the mid term.

4.6 Summary and Hidden Costs
The cost of the four regulation measures proposed by the

French Academy of Technology can be estimated at about 1 bil-
lion € per year for the European Union and could grow up to 5
billion € or more within 10 years as the number and scope of
software patents increases. Such an increase is to be expected,
considering the fact that all human ideas can be represented in
the form of algorithms and put to practical use by means of
Neumann’s universal computer, and that computing power is
continuing to double every two years and to pervade society to
a degree which has by far not been exhausted.

Such costs do not include the 30% increase in software
development generated by the requirement for an industrial
property strategy for software publishers, nor do they include
the future cost of patent insurance for service companies.
Those costs are the same for everyone and are paid by the end
consumer.

Other Approaches to Reducing Risks of Software
Patentability

Regulation approaches allow to put European Law in line
with US Law which may be useful to satisfy financial markets
while preserving the European identity, innovation and compe-
tition. However, it is quite expensive. Other cheaper approach-
es exist if one considers adopting a different Law.

5.1 Explicit Boundaries on Rights Derivable from Patents
The use of patented methods for non-commercial purposes

such as private use and research has traditionally been free.
Moreover medical therapy and farming enjoy certain exemp-
tions. Two more such boundaries on patent enforceability could
easily be introduced: interoperability and Open Source / Free
Software.

The interoperability exception should extend to software
patents the interoperability principle defined in the European
software copyright Law. The interoperability exception should
guarantee some kind of automatic free licensing for interoper-
ability purposes. It could be decreed for example that a free
license is automatically granted for importing / viewing data
from another programme, that a free license is automatically
granted for exporting data to another programme unless fully
interoperable open formats exist and that a free license is auto-
matically granted to communicate to another programme
through a network protocol unless fully interoperable open
formats exists to communicate to that other programme. This
way, owners of patents on formats and protocols can either

enforce their property by guaranteeing that all implementations
include fully open and interoperable import filters or network
protocols or let competitors use their property for interoperabil-
ity.

The Free / Open Source software exception could explicitly
stipulate that the Open Source / Free Software process is a kind
of R&D or even a parallel system for the promotion of innova-
tion and diffusion and can therefore not be considered as a pat-
ent infringement. Various degrees of exemption are possible.

Such explicit exemptions produce near equivalent effects to
what the guarantee fund provides.

5.2 Limitations on What Can Be Claimed
One may consider that only claims on physical device or

physical processes may be accepted and that claims on soft-
ware on a media carrier should be rejected.

Thus the publication of software could no longer be viewed
as a direct infringement. Even if it could still constitute a
contributory infringement, this reduction in liability would
significantly contribute to protecting small software publishers
from abusive litigations because contributory infringement
provisions are much more flexible than direct infringement
provisions.

Such an explicit litigation could state for example that soft-
ware distributed for free on the Internet can never be consid-
ered as a contributory patent infringement as long as all patents
required to use it commercially are clearly listed. Such an
approach is required in our opinion in order to make the inter-
national nature of software distribution on the Internet compat-
ible with the national nature of patent law. On the other hand,
matters could be different for software distributed on physical
media or to software sold on the Internet for which some kind
of national nature exists (ex. credit card number). Physical
devices (ex. PABX, missile) and industrial applications of algo-
rithms (e.g. steel cutting) could receive yet another kind of
treatment.

Such explicit limitations produce near equivalent effects to
what an algorithm database and better examination provide
against juridical terrorism. Owners of valid software patents
are encouraged by this system to reach an agreement with soft-
ware publishers.

An even more friendly variant would be to restrict enforcea-
bility to embedded systems, i.e. devices which are not laid out
for reprogramming by the user. This method would protect
much of the traditional interests of the telecommunications and
industrial software patent owners while keeping those systems
free of patents where an ever-increasing number of freelancers
and small companies are making significant contributions to
new developments.

5.3 Sui Generis Rights
This approach has been suggested by the Conseil Général

des Mines in September 2000 as well as by Dr. Martin Mayer
<(http://www.m4m.de/internet/pmsoftpa.htm> (spokesman of the Chris-
tian Democrat/Social Union in the German parliament) and
many others <http://swpat.ffii.org/stidi/basti/indexen.html>. It consists in
creating a special-tailored property right (ius sui generis) for

5

Open Source / Free Software: Towards Maturity

30 UPGRADE Vol. II, No. 6, December 2001 © Novática and Informatik/Informatique

algorithms (teachings of logical functionality). At the same
time, it would have to be made clear that patent law is also a
special-tailored right, namely for technical inventions23 (teach-
ings of physical causality). The relationship between copyright
and the algorithm law still seems unclear. One approach is to
consider copyright as applicable to all intellectual creations and
at the same time extend or replace it by some specialised laws
in niche areas, such as software behaviour or industrial design.
Some arguments for this approach are of political nature: it
provides a link between an American software patent system
and a European system where patents are limited to technical
inventions. Moreover it provides an outlet for accommodating
legitimate interests in algorithm property, as far as they may
exist, in a balanced and adequate manner.

What Is so Special About Software?
The software economy includes properties which do not

exist in any traditional industry:
1. Software is pure information: it can be published on the

Internet with zero marginal distribution costs.
2. Software developed by one man (ex. the Linux operating

system, the Konqueror web browser) or a group of friends
(ex. the Apache Web server, the Ogg music compression
format) can compete with equivalent software developed
by multinational companies such as Microsoft, Thomson
Multimedia or Netscape (ex. Windows, Internet Explorer,
iPlanet, MP3).

3. Highly multidimensional network effects: multiple inter-
operability issues are coupled in software which generates
much stronger network effects than in any other field.

The first two features explain why much software innovation
comes from individual developers and very small software
publishers based on the Internet. It is a justification for protec-
tion measures in favour those two groups. The last feature is an
argument for stronger competition protection measures.

The epistemiologic nature of software is equally striking:
1. Software is logics, a hierarchy of abstract functions.

Before the computer existed, software already existed.
Patent law scholars were careful not to allow the patenting
of the logical aspects inherent in all apparatuses, such as
“operation instructions”. With the advent of the computer,
these logical aspects emancipated themselves from the
apparatuses and the humans operating them.

2. Software is equivalent to human reason and to human
language. It consists in describing a reproducible series of
steps to manipulate data (abstract information). Algo-
rithms can describe all human reasoning. While speaking
Logical Language (Loglan/Lojban), human speech be-
comes turing-complete. Computer programs are equiva-
lent to mathematical proofs and are validated by means of
logics rather than by physical experiments.

3. The value of software ideas lies in their abstractness <http:/
/swpat.ffii.org/vreji/papri/ist-tamai98/indexen.html>. Ingenuous soft-
ware innovations, such as the Karmarkar inner-point
method <http://swpat.ffii.org/vreji/papri/konno95/indexja.html>, are ex-
tremely general, leading to patents with an unoverseeably

broad scope of applications. Less abstract software ideas
tend to be trivial. Most software patent claims are both
trivial and broad, and this phenomenon does not signifi-
cantly depend on how strictly patent offices apply the
rules of “novelty” and “non-obviousness”. Moreover,
abstractness makes novelty search all but impossible.

4. Software is reflexive (it is its own description): it can be
self generated without human intervention, it can dupli-
cate itself just like a conscious life form, it can coordinate
itself with other software just like a social form. It is an
objectivation of human intelligence and lives through the
communication of those who understand the language in
which it is written. Many software companies have names
like “Active Knowledge”, “Thinking Objects” and other
terms drawn from “Artificial Intelligence”, which reveal
that software is increasingly working as the brain within
our social organism and thereby takes on functions which
previously belonged to human intelligence or even to law,
as Prof. Lessig’s book “Code is Law” convincingly shows.

5. Software is intellectual creation and even art. There are as
many ways to implement a patented functionality as there
are ways to apply algorithms like chromatic modulation or
twelve-tone music to the creation of symphonies. Pro-
grams are often even more complex and delicate than
symphonic creations. The difficulty usually does not con-
sist in devising appropriate algorithms (building ele-
ments) but in building a well-designed “tissue”, a sustain-
able multi-layer hierarchy of functionalities with an
infinite number of choices that require skill and imagina-
tion. Therefore copyright is at least as appropriate to soft-
ware as to construction plans, scientific articles, operation
manuals, pieces of music and most of the other types of in-
tellectual creations for which it is used. Even artistic cre-
ations such as multimedia works and games include soft-
ware programming. Moreover, poems written in Logical
Language have a particularly high aesthetic value, and
even pure programming languages like Perl are occasion-
ally used for poetry.

These properties require to pay a lot of attention from a jurid-
ical point of view. They require to consider with great care the
meaning of infringement and contributory infringement
induced by the use of single software or multiple software.
Moreover they make it necessary to define a clear limit to the
patent system in order not to let crude control mechanisms
which were designed for material objects reach out into the
sphere of the human mind. Some writers like Dr. Kiesewetter-
Köbinger, patent examiner at the German Patent Office, have
therefore argued <(http://swpat.ffii.org/penmi/bundestag-2001/kiesew/
indexde.html> that software patents constitute a radical breach of
basic values of our civilisation and an attack on central tenets
of our (German) constitution, ranging from Art 1 “The Dignity
of the Human Being is Untouchable” and Art 2 (equality prin-
ciple) to freedom of expression, freedom of contract design and
the requirement that the intellectual property, which in the case
of software consists in the tissue, be protected rather than
expropriated.

6

Open Source / Free Software: Towards Maturity

© Novática and Informatik/Informatique UPGRADE Vol. II, No. 6, December 2001 31

Conclusion
Regulating software patent abuses has a cost: between

about 1 billion and 5 billions € every year for the European
Union. Only public money can finance this cost, most of which
consists in improving the patent reviewing process and imple-
menting a guarantee fund. Unless a Software Patent Regulation
Authority (SPRA) is explicitly created and budgeted within the
the European regulations to come on software patents, we
doubt that European governments will be able to finance such
costs.

Other approaches to regulation exist and provide similar
effects: introducing explicit exceptions and limitations in order
to enforce interoperability, to protect Open Source / Free Soft-
ware and to protect small publishers against juridical terrorism.
Such approaches should be seriously considered and compared
to regulation approaches.

Economy however is not the only issue in the case of soft-
ware patents. Law consistency issues should be addressed too.
For example, any extension of the patent system to software
without justifications of a positive economic impact could
eventually be in violation with Article 10 of the European Con-
vention on Human Rights. Up to now, no one has ever seriously
argued let alone proven that software patents have any positive
economic effects24.

Also, the epistemologic nature of software creates unique
issues. For example, the ownership of software innovations
generated by “invention machines” is yet unknown25. Failing
to design a consistent and adequate patent law may achieve the
opposite of “clarification” and “harmonisation”: higher juridi-
cal uncertainty than ever before.

Notes
1. see European Consultation on the Patentability of Computer-Im-

plementable Rules of Organisation and Calculation (= Programs
for Computers) <http://swpat.ffii.org/vreji/papri/eukonsult00/indexen.
html>, The results of the European Commission Consultation Ex-
ercise on the Patentability of Computer Implemented Inventions
<http://swpat.ffii.org/vreji/papri/eukonsult00/softanalyse/indexen.html>,
Software patents: will Europe roll over for the multinationals?
<http://www.theregister.co.uk/content/archive/13942.html> and
Mesures prioritaires pour une accélération du mouvement de
l’innovation en France <http://www.medef.fr/fr/A/Adoc/A2000/A 12-07-
00 mesures-prioritaires.pdf>

2. EuroLinux Alliance Petition to Protect Software Innovation in
Europe <http://petition.eurolinux.org/>

3. Conservative as well as left-wing politicians have both expressed
positions against software patents. <http://petition.eurolinux.org/
statements>

4. On 2001–03–14, at a parliamentary hearing a majority of coali-
tion and opposition party MPs instructed the Dutch secretary of
state of economic affairs to:
1. define workable rules for eliminating trivial software patents
2. only after that consider allowing software patents
3. actively promote this view in the EU
The test criteria were to be drafted by FENIT, the dutch IT indus-
try organisation and VOSN, the dutch Open Source organisation.
On 26th July 2001, the proposed criteria were published <http://
www.vosn.nl/patenten/pers200107241.html> by FENIT and VOSN:
1. Distinguish between technical and non technical problem solu-
tions in terms of “planned use of controllable natural forces to
directly achieve a causally overseeable effect”.
2. If programs are part of an invention: publish the source code

along with the claim, also the program should work.
3. As far as programs are concerned, the patent protects only the
implementation submitted in (2).
4. The claim should be accompanied by a proof that an experi-
ment (again defined in terms of natural forces) was necessary to
arrive at the solution and that it was actually carried out.
5. Create a suitable incentive structure for preventing undesirable
patents, avoid that rejecting is more expensive than granting etc.

5. see Stimulating competition and innovation in the information
society <http://www.pro-innovation.org/rapport brevet/brevets_plan.pdf>,
IPI Study: The Economic Impact of Patentability of Computer
Programs <http://europa.eu.int/comm/internal_market/en/intprop/indprop/
study.pdf>, Intellectual Property Initiative <http://info.sm.umist.ac.uk/
esrcip/background.htm>, Patent Protection of Computer Programs
<ftp://ftp.ipr-helpdesk.org/softstudy.pdf>, Security in Information Tech-
nology and Patent Protection for Software Products – Expert
Opinion by Lutterbeck et al. written at the order of the German
Ministry of Economics and Technology <http://swpat.ffii.org/vreji/
papri/bmwiluhoge00/indexen.html> and Studie von Frauenhofer und
MPI über die wirtschaftlichen Auswirkungen von Softwarepaten-
ten <http://swpat.ffii.org/vreji/papri/bmwi-fhgmpi01/indexde.html>.

6, Avis de l’académie des technologies concernant la brevetabilité
des inventions mises en oeuvre par ordinateur <http://www.internet.
gouv.fr/francais/textesref/avisacatec180701.htm>.

7. An explanation of this feature of software patents can be found in
Chapter 3 of the Conseil Général des Mines <http://www.pro-
innovation.org/rapport brevet/brevets plan.pdf> report.

8. This is regularly suggested not only by patent lawyers but also by
some representatives of universitarian informatic research, such
as the president of the German Gesellschaft für Informatik e.V.
<http://swpat.ffii.org/stidi/lijda/giev/indexde.html> and his colleague Prof.
Endres as well as some people who have transformed university
research projects into private software patent licensing business-
es.

9. In software, “reinventing is commonplace”, because devising an
algorithm is usually easier than analysing someone else’s work –
patent advocates “overemphasize inventing”, it is argued <http://
lpf.ai.mit.edu/Patents/AgainstSP/asp-toc.html>. A former Microsoft
system architect and current day IT consulting guru exhorts
investors <http://joelonsoftware.com/stories/storyReader$17> to discard
the widespread “building-the-better-mousetrap belief”: The key
to success in software business is not in getting one’s hand on
great ideas, but in building a team of talented programmers who
will know by themselves how to “convert capital into software
that works”.

10. The latter view is shared and explained in detail by the German
Federal Supreme Court’s Betriebssystem <http://swpat.ffii.org/vreji/
papri/bgh1-bs90/indexde.html> decision of 1990, which also states
that operating systems are not technical inventions, because they
make use of known physical devices within a framework of logics
which is already predefined by these devices.

11. Patent Jurisprudence on a Slippery Slope – the price for disman-
tling the concept of technical invention <http://swpat.ffii.org/stidi/
korcu/indexen.html)>.

12. for detailed hints on how to harness this art, see “Keith Beresford
– Patenting Software under European Patent Convention – 2000,
Sweet & Maxwell Ltd. ISBN 0 752 006339".

13. See documentation <http://swpat.ffii.org/stidi/korcu/indexen.html>, espe-
cially Interpretation of art 52 of the European Patent Convention
in view of the question, to what extent software is patentable
<http://swpat.ffii.org/stidi/epc52/exeg/indexde.html> and MV.

14. Moses, the Ten Exclusions from Patentability and “stealing with
a further righteous effect” <http://swpat.ffii.org/stidi/epc52/moses/
indexen.html>

15. This view has been explained in an EPO document <http://www.
european-patentoffice.org/tws/appendix6.pdf> of summer 2000 and
reaffirmed by the EPO’s president Dr. Kober in a journal article
this year. Some writers pronounce themselves even more clearly

7

Open Source / Free Software: Towards Maturity

32 UPGRADE Vol. II, No. 6, December 2001 © Novática and Informatik/Informatique

in saying that “all business methods have a technical effect and
therefore must be patentable”, see Greg Aharonian: How all busi-
ness methods achieve a technical effect <http://www.european-patent-
office.org/epidos/conf/pat eac01/programme/16.htm>, Erwin J. Basinski:
Business Method Patents in Europe – A Saussurean Explanation
<http://www.mofo.com/news/general.cfm?MCatID=&concentrationID=&ID=
141&Type=5> and US-Urteil CAFC 1998–07–23: Algorithmen und
Geschäftsmethoden patentierbar <http://swpat.ffii.org/vreji/papri/grur-
nack99/indexde.html>.

16. CEC Consultation Summary Report <http://swpat.ffii.org/vreji/papri/
eukonsult00/softanalyse/indexen.html>: Opponents of software pat-
ents wanted swift action on the part of the Commission but the
radical nature of their proposals would require substantial nego-
tiation if the Commission were minded to pursue a restrictive pol-
icy regarding software patents.

17. Why Hasn’t Apple Released Quicktime For UNIX? <http://www.
slashdot.org/askslashdot/00/03/28/1835255.shtml>.

18. Intradat AG <http://www.intradat.de> is a German publisher of a pop-
ular e-commerce system. In order to assess on which of numerous
US software patents in their field they could be infringing, they
spent more than 30,000 USD on expert patent research and as a
result received a list of 30 relevant US patents but no information
on whether Intradat really infringes and whether licenses are
available.

19. BladeEnc News Section <http://bladeenc.mp3.no/skeleton/news.html>
20. Patents on Font Generation by the TrueType and OpenType

Standards <http://swpat.ffii.org/vreji/pikta/xrani/ttf/index.en.html>.

21. This strategy of Microsoft became known through the Halloween
Documents <http://www.opensource.org/halloween/> and has since
then been publicly elaborated by Microsoft representatives at sev-
eral occasions, see Pierre Bugnon, Microsoft France: Petite
Digression sur le Logiciel Libre <http://www.microsoft.com/france/
technet/edito/def_edito.asp>, 2001–07–24 Opensource Summit and
Microsoft <http://aful.org/pipermail/patents/2001-August/002284.html>
etc.

22. Shavell, van Ypersele, 1998, Rewards versus Intellectual Proper-
ty Rights.

23. see the concluding paragraphs of the Dispositionsprogramm
<http://swpat.ffii.org/vreji/papri/bghdispo76/indexen.html> decision of the
German Federal Supreme Court, which explain this very con-
vincingly and demands that the various specialised property sys-
tems need to be kept clearly separate.

24. Existing economic arguments show that software patents
promote concentrations in the software publishing economy as
well as in the software consulting services. They also show that
software patents are needed for competing in economic environ-
ments such as that of the US, where software patents have
become an important factor. Comfortable mechanisms for inter-
national patent filing (PCT) already exist and could be improved.
European companies can use them regardless of whether the
particular subject matter is patentable in Europe or not.

25. Origin of the Patents by Eric Knorr <http://www.technologyreview.
com/web/knorr/knorr080301.asp>.

